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In this paper we present a new family of conjugate gradient algorithms. This
family originates in the algorithms provided by Wolfe and Lemar&hal for
non-differentiable problems. It is shown that the Wolfe-Lemarechal algorithm is
identical to the Fletcher-Reeves algorithm when the objective function is smooth
and when line searches are exact. The convergence properties of the new
algorithms are investigated. One of them is globally convergent under minimum
requirements on the directional minimization.

1. Introduction

In this paper we consider algorithms for the unconstrained minimization problem:

min/(;r). (1.1)

In general, we assume that the function / is continuously differentiable, i.e.,
/ e C1 (however in some cases we will apply a stronger assumption that / e C2).
To solve this problem we may use the conjugate gradient algorithm. The
direction at the kth step of this algorithm is determined according to the rule:

(1.2)

where, e.g.,

* ? ( * ) - * ? ( * ) W(X)) I|P/(*)II2
 n ~

( L 3 )

see, e.g., Bertsekas (1982), Fletcher (1987), Fletcher and Reeves (1964), Polak
and Ribi6re (1969); more complicated formulae are also possible Shanno
(1978a, b). The first formula in (1.3) is usually called the Polak-Ribi6re formula
while the second one is the Fletcher-Reeves formula.

The conjugate gradient algorithm is motivated by the fact that if/is a quadratic
function and if the minimization in the direction dk is exact, then a minimum is
reached in at most n steps.

In the mid-seventies, new conjugate gradient algorithms were constructed by
Wolfe (1975) and Lemar^chal (1975) for solving non-differentiable problems.
Their bundle methods take a convex hull of the subgradients from current and
previous iterations to define a descent direction. It was proved that if the function
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4 4 4 R. PYTLAK

is quadratic and the directional minimization is exact, then their algorithms
reduce to the conjugate gradient method.

If the function / is differentiable then the Wolfe-Lemarechal algorithm defines
the search direction by

dk = -Nr{Vf{xk),-dk.l}, (1.4)

where Nr{a, b) is defined as the point from a line segment spanned by the
vectors a and b which has the smallest norm, i.e.,

\\Nr{a, b}\\ = min {\\Xa + (1 - A)6|| : 0 « A « 1}, (1.5)

and || || is the Euclidean norm. Let us notice that the operation Nr{-, •} can be
performed easily. This is a simple univariate quadratic problem with box
constraints and can be solved analytically.

The rule (1.4) was mainly motivated by the need of having dk as a direction of
descent (in the non-differentiable case Vf{xk) is substituted by a bundle of
subgradients).

Let us consider the problem:

min {n + \\\d\\2}
G . . O - '

s.t.

We obtain the solution of this problem by solving its dual:

max {-{\\kVf{xk)-{\-k)dk_,\\2) = -\\\Nr{Vf(<xk), -dk_x)\\
2

(l-A t)^_, | |2 . (1.7)

Moreover the optimal value fik is

Hk = -\\dk\\
2. (1.8)

From this we can easily deduce the following properties:

(Vf(xk),dk)^-\\dk\\
2, (1.9)

-(dk_ltdk)^-\\dk\\
2, (1.10)

(Vf(xk),dk) = -\\dk\\
2, (dk.i,dk) = \\dk\\

2, if 0<A*<l , (1.11)

because (Xk, 1 — A*) are the Lagrange multipliers for the problem (1.6). From
(1.9) we have that if \\dk\\ ^ 0 , dk is a direction of descent.

We ask the following questions. If the function / is not quadratic, to which
conjugate gradient algorithm, if any, is the Wolfe-Lemarechal algorithm
equivalent? Can we construct other conjugate gradient algorithms based on their
scheme?

In order to answer these questions we parametrize the rule (1.4). We introduce
the family of algorithms:

dk = -Nr{Vf(xk),-fikdk_l} (1.12)
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and will work out formulae for f}k for which the process xk+i =xk + akdk

becomes the conjugate gradient algorithm.
Let us notice that if /3t = 1 then we will have the Wolfe-Lemarechal algorithm.

We will show that the Wolfe-Lemar^chal algorithm is equivalent to the
Fletcher-Reeves algorithm, provided that the directional minimization is exact.
Moreover we will prove that there exists a counterpart of the Polak-Ribi6re
algorithm, and that it is globally convergent under minimal requirements on
directional minimization.

Wolfe and Lemardchal consider only quadratic functions as far as the
differentiable problems were concerned. We use their scheme for general
continuously differentiable functions and study the effect of fik on the perfor-
mance of the algorithms.

To complete our introduction we would like to notice that the new algorithm
with the direction finding subproblem (1.12) will have properties similar to
(1.9)—(1.11) (which will be extensively used in this paper):

(Vf(xk),dk)*-\\dk\\
2, (1.13)

-pk-(dk.1,dk)^-\\dk\\
2, (1.14)

{Vf(xk),dk) = -\\dk\\\ &<<**-!. <**> = IKII2. ^ O<A*<1.
(1.15)

The organization of this paper is as follows. In Section 2 we state our general
algorithm together with its convergence properties. In Section 3 we introduce new
conjugate gradient algorithms, while in Section 4 we prove global convergence for
one version of our algorithm. In Section 5 we present numerical results of
applying this version of our algorithm to some standard test problems.

Finally we remind the reader that we are concerned with functions defined on
the Euclidean space &", \\-\\ is the Euclidean norm, (•, •) is a scalar product and
rd (a, b) the angle between the two vectors a and b.

2. A general algorithm

Our general algorithm is as follows.

ALGORITHM Parameters: \i, r\ e (0, 1), r\ > n, e>0, {fik}o-
Data: x0.

1. Set k = 0

2. Compute:

dk = -Vf(xk). (2.1)

If ||d*|| = 0 then STOP, if not go to Step 3.

3. Compute:

dk = -Nr{Vf(xk),-pkdk.l}, (2.2)

if \\dk||=0 then STOP.
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4 4 6 R. PYTLAK

4. Find a positive number ak such that:

f(xk + akdk) -f{xk) ^ -liak\\dk\\
2, (2.3)
2 (2.4)(Vf(Xk + «kdk),dk)&rl\\dk\\.

5. Substitute xk + akdk for xk+u increase k by one, go to Step 3.

The directional minimization is defined by the expressions (2.3)-(2.4). These
rules, which lead to inexact minimization, were taken from the algorithms for
non-differentiable problems (Bihain (1984), Kiwiel (1985), Lemarechal (1975),
Miffiin (1977)).

REMARK The choice of n is very important for the performance of the Algor-
ithm. Because quadratic interpolation is usually applied to approximate values
of ak which satisfy (2.3)-(2.4), we should assume that 0<n <0-5. Otherwise we
could miss minimizing points in the case where g(a) =f(xk + adk) are quadratic
functions and this would deteriorate the performance of the Algorithm.

A procedure which finds ak satisfying (2.3)-(2.4), in a finite number of
operations, can be easily constructed (Mifflin (1977)). We include considerations
devoted to this procedure solely for completeness of this work.

LEMMA 1 There exists a procedure which finds ak satisfying (2.3)-(2.4) in a
finite number of operations, or produces ak—><» such that/(x t + akdk)—> — <».

Proof. The proof is based on Mifflin (1977). Let e > 0 be such that r/ > fi + e. Let
a-0 be an arbitrary positive number and set a% = <*>, ar° = 0. The procedure, which
we propose, produces a sequence of points {a1} constructed in the following way.
If

f(xk + a'dk) -f(xk) *-(p + e)a'\\dk\\
2 (2.5)

we set a'+i = a', a1^1 = O'N and a^+1 = a ,̂, a # ' = a' otherwise. Next, we
substitute a'+l by (a^ + cr^)/2 if a # ' < °°, or by 2a' if a # ' = °°.

If for every a1 generated by the procedure we have that a1 satisfies (2.5) then
o^s will remain equal to infinity and f(xk + a'dk)—»—<». Therefore let us
suppose that there exists a' such that (2.5) is not fulfilled. This means that at
some iteration the bisection procedure has started and we have the sequences
{<X'H}, {O^} such that a^, — ar̂ —»0, cr̂ —»3-, because either a1^1 or a1*1 is set to
(aJ

N + a'll)/2 and a # ' - a^+1 = {a'N- a^)/2. Moreover, let us assume that for
every /, a1 never satisfies simultaneously (2.4) and (2.5) (otherwise we have found
the desired coefficient ak). In this case a'tl—*a and a satisfies (2.3). If we have
(2.4) for a' infinitely often then the procedure will terminate after a finite number
of iterations, because a1—*• a, / i s continuous and (2.3) will have to be satisfied.

Now, let us suppose that (2.4) holds only for the finite number of a', thus

a
Jdk),dk)<-V\\dk\\

2

for infinitely many times. This leads to

 at R
ussian A

rchive on M
ay 13, 2016

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/


CONVERGENCE OF CONJUGATE GRADIENT ALGORITHMS 447

Because

f(xk + cSydt) -f(xk) >-(/* + eWN ||41|2, (2.6)
thus

f(xk + arUO -f(xk + Mk) > - ( / / + £)(<^ - a) \\dk\\
2 (2.7)

and

-T) \\dk\\
2 > Jim ( Vf(xk + a'dk), dk) = { Vf(xk + &dk), dk)

/-» orN - a

but this is impossible since 77 > \i + e. •

The step length conditions (2.3), (2.4) have been implemented (Pytlak (1989))
and work well in practice.

To investigate the convergence of the Algorithm we begin by providing a
lemma.

LEMMA 2 If the direction dk is determined by (2.2) and the step-size coefficient
ak satisfies (2.3)-(2.4) then:

lim | | 4 | | = 0 (2.8)

or

lim/(**) = -°o. (2.9)
*—=

Proof. Let us assume that (2.9) is not true. Because {/(x*)}o is non-increasing
and bounded from below, it has to be convergent, so that we have

f(xk + akdk) -f(xk) - ^ 0. (2.10)

(2.10) and (2.3) imply (from the theorem on three sequences) that

dk\\
2-^0. (2.11)

This is not equivalent to (2.8), thus let us suppose that there exists a set of
natural numbers K such that

lim 11̂ 11 = 11511*0, (2.12)
€ K

where, in general, we assume that \\d\\ can be infinite. Then, from (2.11) and
(2.12) we have

J«"aK«k IK 11=0, (2.13)

so that

lim \\xk+l-xk\\=0.
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448 R. PYTLAK

Using this, (2.4) and (1.13) we get

-T) \\dk\\
2^ (Vf(xk+]), dk) ^ -\{\ + r,) \\dk\\

2 (2.14)

for k 3* k,.
Obviously this is impossible (rj e (0, 1)), therefore (2.8) is true. •

Let us look at the specification of the direction dk. In general we have the
following formula for dk:

where 0s£ Xk ^ 1.
The condition (2.8) is not equivalent to the condition: limAr_^ ||Jjf(**)ll =0.

This is due to the additional vector pkdk_, in the formula (2.15).
It can happen that (2.8) holds because the vectors dk_t are not appropriately

scaled by the fik. The Wolfe sequence is the example of this situation. If fik = 1
then it can be shown that \\dk\\^x \\dk-\\\, X e (0, 1) (see Mifflin (1977), Wolfe
(1975)).

Moreover we can have

J\m^xd(-Vf{xk),dk_,) = n

for a certain sequence {Vf(xk)}keK and inexact line search.
In each of these situations we shall have (2.8). Thus in order to prove the

convergence of the Algorithm we have to exclude these situations.

THEOREM 1 Let us assume that {f5k} is such that

lim inf (0k ||d*_,||) s* v, lim inf || Vf(xk)\\ (2.16)
* — = k—=c

where v, is some positive constant. If there exists a number v2 such that
V2 6(0,1),

(Vf(xk), dk_1)=sv2\\Vf(xk)\\ \\dk_,\\, whenever kk e (0, 1) (2.17)

then \\mk^*.f(xk) = —<*>, or every cluster point x of the sequence {xk}?t generated
by the Algorithm is such that Vf(x) = 0.

Proof.

Case (a) Let us suppose that for infinitely often k e Klt Xk e (0, 1), thus

(Vf(xk), dk) = -\\dk\\
2 and pk(dk-t, dk) = \\dk\\

2. (2.18)

Moreover let us assume that

k—**•. ke K\

From this it follows that
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FIG. 1.

Because of this, the equalities (2.18), and since by Lemma 2 limt_»: \\dk\\ = 0 (due
to our assumption, (2.12) does not hold), we have

lim cos rd (—Vf(xk), dk) = lim cos <pk

= Hm ( - *... , : r - r r )= lim ^ - = 0. (2.19)

lim c o s r d ^ d * . , , dk)™ lim cos 6k = lim ——*—-
*—•=>=.AreAfi k—^.keK{ k—^.keK, \\dk-\\\ fik

= 0. (2.20)

Since (2.19), (2.20) are satisfied: <pk-+n/2, <!>*-• JT/2. Let us consider the angle
<pk + dk. From the usual calculus it follows that

lim cos (<pk + dk) = lim cos (pk cos 6k — lim sin <pk sin 6k = - 1

(2.21)
(see also Fig. 1), but this implies that

This contradicts our assumption (2.17) hence we conclude that Vf(x) = 0.

Case (b) Now let us consider the case Xk = 1. If it occurs infinitely often for
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450 R. PYTLAK

k e K2and

xk * x, with Vf(x) ^ 0

we have that there is a v4 such that

liminf ||F/(jt*)|| = v 4>0 (2.22)

and by assumption A* = 1, and (2.16)

liminf (fik ||d*_,||)> v,v4>0. (2.23)

But

lim | K H = 0 = lim (fik ||</*_,||)> v,v4>0

and this is impossible.

Case (c) If we have the case A* = 0 for k e K^ then -dk = Vf(xk) for k e K?. If

** >_...„: i. Vf(x)*0

then

but this is a contradiction to lim*_,c \\dk\\ =0. This completes our proof. •

The condition (2.17) is independent of the choice of the sequence {Pk}o and is
connected with the directional minimization. Therefore it is not surprising that in
some important situations it can be substituted, by other, more easily verifiable
conditions.

LEMMA 3 Let {xk}o be generated by the Algorithm, where /3* satisfies (2.16).
Then

lim f(xk) = -oo or lim||P/(jc,)ll=0 (2.24)

if one of the following conditions holds:

(i) there exists r; e (0, 1) such that

(ii)
lim 11**+1-** 11=0, (2.26)

(iii) the function / is locally uniformly convex, i.e. there exists an increasing
function d from 9t ( # + = {x e 9t : x s=0}) into 91 such that:

d(0) = 0, d(t)>0 if r>0,

Vx, yett", VAe[0, 1]. (2.27)
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CONVERGENCE OF CONJUGATE GRADIENT ALGORITHMS 451

This condition is satisfied in particular if / is strongly convex, in that case
d(t) = at2, a> 0.

Proof. First of all we assume that there exists M > -°° such that

f(xk)&M, Vk, (2.28)

otherwise we would have our thesis.
Let us assume that the case (i) occurs, and

)|| = * > 0 (2.29)

(where, in general, we assume that a can be equal to +°°) for some infinite set K.
Then from Theorem 1 we shall obtain that for every v e (0, 1) we will have

(Vf(xk),dk_l)>v\\Vf(xk)\\\\dk_l\\

(contradiction to the condition (2.17), provided that 0 < A t < l ) . Because
||<4|| —•*_,e0 (Lemma 2) and since (2.25) we can write

(Vf(xk),dk_i)>T1\\dk_i\\
2

which contradicts our assumption (2.25). Therefore our assumption (2.29) has not
been valid.

For part (ii) of the lemma, the proof is carried out along the same lines as for
part (i). Firstly we assume that for some infinite set K we have (2.29). Therefore
for every v e (0, 1) we have

(Vf(xk),dk-l)>v\\Vf(xk)\\\\dk_]\\.

But for sufficiently large k e K, since (2.26), we will achieve the relation (from
Theorem 1, and (1.13))

v=s lim (Vf(xk), j ^ lim (-||<4-ill) = 0. (2.30)

This is impossible, thus (2.29) cannot happen.
Now let us assume that case (iii) occurs. Because / is uniformly convex and

differentiate, we have (see Lemare'chal (1975))

f(y)^nx)+(Vf(x),y-x)+d(\\y-x\\) ^ ^
d(\\y — x\\)—>0 when Hy —x||—»0.

Let us suppose that there exists subsequence {Vf(xk)}keK such that (2.29) is
satisfied. In this case, in view of condition (2.16),

(Vf(xk),xk+i -xk) = -ak \\dk\\
2, (2.32)

since 0< Xk < 1. Thus, from (2.28), we have

and from (2.3)
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452 R. PYTLAK

Thus it follows, from (2.31), (2.32) and the definition of d(), that

This, as in the proof of part (ii), leads to a contradiction. D

Lemma 3 indicates that the assumption (2.17) is necessary because of the rather
inexact directional minimization. Here we must also mention that condition
(2.26) plays an important role in conjugate gradient algorithms which are based
on the Polak-Ribi6re rule (recent results have shown that this assumption is not
necessary for the Fletcher-Reeves algorithm, see Al-Baali (1985), Powell
(1977,1986), Shanno (1978b)).

3. New conjugate gradient algorithms

Now we shall give examples of sequences {fik}o which assure that under exact
directional minimization the directions {dk}o generated by the Algorithm are
conjugate, provided that / is quadratic.

For this purpose we consider the simple direction finding quadratic problem:

min ||A(-M*-i) + ( l -W(**) | | . (3-1)
ll«U«.l

We can solve this problem analytically:

= min

+ (l-X)2\\Vf(xk)\\
2). (3.2)

So, if (Vf(xk), <4_,) =0 we obtain

m i n ^ | | ^ + 1 | | 2 + | | F / ( A : * ) | | 2 ' V ' '

If we let

Pk=—j=^———^—, y* e (0, 1) (3.4)

then, after some calculations, we obtain
(3.5)

We notice that yk has an important meaning. We can show that the angle
between dk and Vf(xk) has a cosine:

We shall use this to derive formulae for the sequence {/3*}o- Let

(3.7)
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where

or

and

•4-dk-x. (3.10)

These formulae are derived under the hypothesis that the directional minimiza-
tion is exact. It can be shown that the cosine of the angle between dk and Vf(xk)
coincides with that of the Fletcher-Reeves (3.8) and the Polak-Ribie"re algo-
rithms (3.9), respectively.

THEOREM 2 If directional minimization is exact, {j8t}o is defined by (3.4) in
which yk is determined by (3.7), (3.10) and one of the expressions (3.8) or (3.9)
then

(i) the directions {dk}Z are identical to those generated by the conjugate
gradient algorithm,

(ii) if tk is given by (3.9) and l i m ^ , \\xk+l -xk\\ =0 we also have:

liminf||F/(jr t)||=0. (3.11)

*—«

Proof. We have

d()=-Vf(Xi)),
dk+l = Yl+i(tk+A- Vf(xk+I)), dk = — dk,

k=0,l,..., y,,= l. (3.12)

Moreover (Vf(xk), dj^) = 0.
Now consider the directions generated by the conjugate gradient method (see

(1.2)-(1.3)).

do=-Vf(xo),

dk+t = tk+]3k-Vf(xk+l), Ac = 0 ,1 , . . . ,

and (Vf(xk),dk_]) =0. It is evident that the directions {d^Z fulfill these
conditions and because y\>0, dk = y\djL. We have thus proved assertion (i).
Regarding (ii) we recall (3.6). If

then it can be shown that lim inft_^ yk > 0. But that together with condition
(2.26) leads to a contradition (Lemma 3(ii)), hence lim inf^, || Vf(xk)\\ = 0. •
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From (3.7)-(3.10), (3.4) it is evident that we can deliver many formulae for fik,
those described by (3.4) and (3.7)-(3.10) are only examples. Another formula is
obtained by setting

. =

*
in (3.7) (this is the Hestenes-Stiefel formula which is equivalent to the
Polak-Ribie"re formula only when directional minimization is exact, see Shanno
(1978a)).

If we define fik by (3.4) with yk given by (3.7) we obtain

If we take tk defined by (3.8) and recall (3.5) (which is valid when directional
minimization is exact) we obtain the Wolfe-Lemare'chal formula

& = 1. (3-15)

Similarly we can obtain the fomula (see (3.9))

B \\W(xk)\\
2
 f 3 1 6 ,

P K ]

As (3.15) can be regarded as the Fletcher-Reeves formula, (3.16) can be
treated as the Polak-Ribi6re formula. (3.14) with y*_, and tk from (3.7)-(3.10)
can be interpreted similarly.

Obviously formula (3.15) does not satisfy the assumptions of our theorem
concerning the convergence of the Algorithm, because

In the case of the Wolfe-Lemar6chal formula the method of assuring global
convergence reduces to restarting the Algorithm whenever | | rf t | |«6 t , where

4. The globally convergent conjugate gradient algorithm

In this section we examine the Algorithm with the sequence {/3*}d defined by
(3.16). To prove global convergence results we have to assume that there exists
L < +oo such that:

\\W(x)-Vf(y)\\*L\\x-y\\ Vx,ye&". (4.1)

We can prove the following theorem.

THEOREM 3 If the function / satisfies condition (4.1) then the Algorithm gives

lim/(**) = - « , or lim | | 7 / (^ ) | |=0 (4.2)
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provided that:

(i) 0k is given by (3.16),
(ii) there exists M < +°° such that ak =£ M, V&.

Proof. We have for formula (3.16):

(4.3)

If f(xk)»L>-oo then, because ||x* - x t _ , | | =s M ||d*_,|| and
(Lemma 2), we know from Lemma 3(ii) that only violation of the condition (2.16)
can destroy our convergence results (4.2). But (4.3) assures us that condition
(2.16) is fulfilled. •

This convergence result is not as restrictive as other results for conjugate
gradient methods (especially for the Polak-Ribie>e methods). Shanno (1978b)
proved that (2.26)=>lim inf*_ ||P/(x*)|| = 0 (if f(x) > £>-<*>, Vx) for his
algorithm which reduces to the Polak-Ribi6re algorithm when directional
minimization is exact.

Condition (ii) in Theorem 3 is very useful in proving convergence of our
Algorithm (with the rule (3.16)) for problems with strictly convex functions.

THEOREM 4 If the function / is twice continuously differentiable and there exist
+oo > M > 0, +oo > m > 0 such that:

M\\u\\2^urV2f(x)u^m\\u\\2, Vx,u, (4.4)

then the sequence {x*}o generated by the Algorithm with fik calculated in
accordance with (3.16) converges to the minimizer of/.

Proof. Assume first that the direction of descent satisfies the condition:

(Vf(xk),dk) = -\\dk\\
2, (4.5)

then we will show that there exists M l
a < M2

a < oo such that a\ ̂  M l
a and a\ ^ M2

a,
where a\, a\ are those values of a which satisfy relations (2.3) and (2.4),
respectively. Because / is twice continuously differentiable we have from Taylor's
theorem:

(Vf(xk + akdk)-Vf(xk),akdk)

= f' (akdj V2f(xk + Xakdk), akdk) dA *£ Moc\ |K||2.
Jo

Thus

< Vf(xk + akdk), dk)^{ Vf{xk), dk) + Mak \\dk\\
2 = \\dk\\\Mak - 1),

so that if
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then a\ 3= MI = (1 — t])IM. In order to show that there exists M2
a we have to use

Taylor's theorem again to get

f(xk + adk) =f(xk) + a(Vf(xk), dk) + t(a)2

for some £k. Therefore, if

then a]^M2
k = 2(1 -/x)/m. Thus, in the first case, there exists Mn = A/^<°° such

that ak«s Ma for all k for which (4.5) is fulfilled, thus from Theorem 3 (because
condition (4.1) is obviously satisfied) we have our thesis.

Let us assume that condition (4.5) is fulfilled only finitely many times. Thus
dk = fik&k-\ for k^kx. Because {x :f(x) =£/(*(>)} is a closed bounded set
(Lemma 12.8 in Pshenichnyi and Danilin (1978)), it is easy to show that

thus

k-k,

and

But
*kPk\\dk WWMW2 ak ..d . ^ «k \\m*k)\\

|( Vf(xk) — Vf(xk-\), W(xk))\ &k-\ L

Therefore either

lim \\Vf{xk)\\=Q, or l i m - ^ - = 0

and from the D'Alambert theorem it follows that E*_*, ak < °°- Therefore there
exists M < 0° such that ak^M, Vk^ku and on the basis of Theorem 3 we have
proved our thesis. •

The algorithm has been presented under the silent assumption that at every
iteration we have

If this condition is not satisfied then dk, Vf(xk+i) are linearly dependent, so that
the linear combination of these vectors will always be a vector collinear with
ty"(jtfc+i). Of course we can avoid this situation by simple modification of the
directional minimization procedure.

We end this section by discussing the use of the Armijo step-size rule in the
Algorithm, i.e. when the coefficient ak in (2.3), (2.4) is determined acccording to:

(4.6)
r e (0,1), 1=0,1 , . . .} .
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If the Armijo step size rule is applied one can prove that one of the conditions
(2.8), (2.9) will hold. This can be demonstrated in the same way as Lemma 2
(some obvious modifications can be found in the proof of Theorem 4.13 (in
Bertsekas (1982)). Moreover, because (2.26) is fulfilled, and {flk} satisfies
condition (2.16), the global convergence follows from Theorem 3 (instead of
using Theorem 1 we can rely on Lemma 3, because of (2.26)).

The new algorithm does not require exact directional minimization and is
globally convergent without any additional assumptions except (4.1). It seems to
be the first such algorithm. Yet we do not recommend the use of (4.6) in the
Algorithm, because the conjugate gradient algorithm with this directional
minimization can exhibit slow convergence.

5. Numerical experiments

Our Algorithm has been implemented on a SUN SPARC1 workstation in
FORTRAN using double precision accuracy. In order to give an idea of the
behaviour of our Algorithm with the formula for pk given by (3.16) we have run it
on several standard test problems.

1. Rosenbrock function (Rosenbrock (I960)):

2. Extended Rosenbrock function (Shanno (1978a)):
10

/ = 2 {100(JC, -x}_lf + (1 -x,)2}, x e <#'",

3. Powell function (Powell (1962)):

/ = (*,+ l(k2)2 + 5(x3 - x4)
2 + (x2 - 2JC3)

4 + 10(x, - x4)\ x e &\

4. Cube function (Himmeblau (1972)):

/ = 100(jc2-je?)2 + ( l - j r , ) 2 , xe®2,

5. Beale function (Himmeblau (1972)):

f = 2(cl—x1{l-x'2))
2, c, = l-5, c2 = 2-25,

/=-i

c3 = 2-625, x e 9t2,

6. Wood function (Colville 1968)):

/ = 100(*2 - x]f + (1 - X])
2 + 90(*4 - x2)2 + (1 - x3)

2

+ 10-l{(x2 - I)2 + (x4 - I)2} + 19-8(*2 - 1)(*4 - 1). x e 9t\

7. Watson function (Le (1985)):
30 f 10 /1030 f 10 /10 . . 2 - | 2

/ - l *-;=.i V - i ' '
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TABLE 1

Problem ITER IFUN IGRAD Le
(1985)

Shanno
(1978a)

Rosenbrock
(-1.2,1.)

Extended Rosenbrock
(-1-2,1 1.)

Powell
(-3,,-l.,0.,l.)

Cube
(-1.2,1.)

Beale
(0.,0.)

Wood
(-3..1..-3..1.)

(-1.2,1. ,-1.2,1.)
(-1.2,1. ,1.2,1.)

Watson
(O.,0 0.)

Oren-Spedicato

38

59

64

42

26

106
67
145
98

18

20

127

130

156

106

69

248
148
353
232

39

46

56

59

65

43

27

108
67
152
99

18

20

—

(22, 138)

—

(13,169)

(7,60)

(20,134)

(383,3416)

(15,99)

—

F

(64,160)

—

—

(113,195)
(101,235)
(93, 219)
(48,118)

F

8. Oren-Spedicato function (Spedicato (1978)):

= 0, = 2, xe® 2"

We use the procedure described in Le (1985). Every time this procedure
finished the conditions (2.3), (2.4) were checked with parameters: n= 0-0001,
r/ = 0-9. If these conditions were not satisfied, we applied the algorithm described
in the proof of Lemma 1.

The results of our computations are shown in Table 1, where ITER means the
number of iterations, IFUN the number of function evaluations and IGRAD the
number of gradient evaluations. Our stopping criterion was

The numbers in the first column are initial points for our Algorithm.
In the last two columns we show the results (if available) for two efficient

methods based on the conjugate gradient approach (which use the same stopping
criterion). The method described in Le (1985) requires as many gradient
calculations as the number of iterations, while for the method in Shanno (1978a)
this number is equal to the number of function evaluations. The first number in
the brackets is the number of iterations, the second is the number of function
evaluations. The symbol 'F' denotes that the method failed to converge. It should
be noted that the method presented in Shanno (1978a) requires two additional
vectors to calculate a direction of descent. We should mention that both these
methods were favourable compared to other conjugate gradient algorithms.
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A comparison with existing techniques gives rise to many questions: computers
and compiler systems on which the other methods were run are not fully
comparable, different line searches and restarting procedures were used, etc.
Therefore the main reason for presenting the numerical results of the new
method was to show that the method (without any restarting procedure) is a
promising alternative.
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